If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x=40
We move all terms to the left:
3x^2-2x-(40)=0
a = 3; b = -2; c = -40;
Δ = b2-4ac
Δ = -22-4·3·(-40)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-22}{2*3}=\frac{-20}{6} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+22}{2*3}=\frac{24}{6} =4 $
| x+40=(2x+8) | | -23=-2+7k | | X/x2=400 | | j/3+3.08=5.08 | | x3+6x2+10x=0 | | h=-35h(3)= | | s/5-1=24 | | −3n+4=n-8 | | h=-35h(3) | | 6(h+20)=330 | | 24c+40=180 | | y-28=9 | | (1/150)/(1/300)x1.2=X | | k/5-19=5 | | n/19-3=3 | | h/23+823=842 | | 8+7x=-15+7x | | 15s-52=608 | | -4(7n-6)-8=-6n-36 | | -2z/3+5=9 | | -4(-6x+8)=-13+5x | | k−13=3 | | x+115+(x+17)=180 | | 5.6x=33.6 | | 36x-45=20+23x | | 3u-3=22 | | 0.5x-11=-0.7x-4 | | 25x-37=19x+11 | | 2.405/3.67=y/1.88 | | 25x-36=19x+11 | | 2×x=14.62 | | 2(x-11)=12 |